회로이론
Ch12 가변주파수 회로망의 동작

김영석
충북대학교 전자정보대학
2015.9.1
Email: kimys@cbru.ac.kr
Ch12 가변 주파수 회로망: 학습 목표

- R, L, C 소자의 주파수 특성
- 회로망 함수의 영점(zero)과 극점(pole)
- 회로망 함수의 보드 플롯(bode plot)
- 직병렬 공진 회로 해석
- 크기와 주파수 스케일링 개념
- 저역통과(LPF), 고역통과(HPF), 대역통과(BPF), 대역저지(BRF) 필터 특성
- 수동 및 능동 필터 해석
12.1 가변 주파수 응답 특성

- **R, L, C, RLC 직렬회로의 임피던스 변화**

\[
Z_R = R = R\angle 0^\circ, \quad Z_L = jwL = wL\angle 90^\circ, \quad Z_C = \frac{1}{jwC} = \frac{1}{wC} \angle -90^\circ
\]

RLC 직렬회로:

\[
Z_{eq} = R + jwL + \frac{1}{jwC}
\]

일반적인 형태:

\[
Z(s) = \frac{N(s)}{D(s)} = \frac{a_m s^m + a_{m-1} s^{m-1} + \ldots + a_1 s + a_0}{b_n s^n + b_{n-1} s^{n-1} + \ldots + b_1 s + b_0}
\]

![Diagram of R, L, C, RLC series circuits](image)

![Graphs of magnitude and phase](image)
예제 12.1

$f < 1\text{kHz}$ V_o?

$$V_o = V_s \frac{R}{1 + jwL + R} = V_s \frac{jwCR}{1 + (jw)^2 LC + jwCR}$$

MATLAB 혹은 PSPICE 사용 혹은 PSPICE 사용
증폭기의 주파수 특성

\[
G_v (j\omega) = \frac{V_o(s)}{V_s(s)} = \frac{R_{in}}{1/sC_{in} + R_{in}} \frac{1}{1000} \frac{1/sC_o}{R_o + 1/sC_o}
\]

\[
= \frac{s}{s+1/(R_{in}C_{in})} 1000 \frac{1/(R_oC_o)}{s+1/(R_oC_o)} = \frac{s}{s+100\pi} 1000 \frac{40,000\pi}{s+40,000\pi}
\]

\[
\approx \frac{s}{s+100\pi} 1000
\]

\[
f_{LO} = 100\pi, f_{HI} = 40,000\pi
\]
회로망 함수, 극점과 영점

- 회로망 함수 (or 전달함수): 전압 이득 \(G_V(s) \) (or \(H(s) \))
- 구동점 함수 (driving point function): 하나의 단자쌍에서 정의되는 임피던스, 예 입력 임피던스
- 극점 (pole) \(p_1, \ldots, p_n \)
- 영점 (zero) \(z_1, \ldots, z_m \)

\[
H(s) = \frac{N(s)}{D(s)} = \frac{a_ms^m + a_{m-1}s^{m-1} + \ldots + a_1s + a_0}{b_ns^n + b_{n-1}s^{n-1} + \ldots + b_1s + b_0}
= \frac{K_o(s - z_1)(s - z_2)\ldots(s - z_m)}{(s - p_1)(s - p_2)\ldots(s - p_n)}
\]
예제 12.2

전달 어드미턴스 \((I_2/V_1)\), 전압이득?

Loop Analysis

\[
KVL @ I_1 : -V_1 + R_1 I_1 + sL(I_1 - I_2) = 0
\]

\[
KVL @ I_2 : sL(I_2 - I_1) + \frac{1}{sC} I_2 + R_2 I_2 = 0
\]

\[
V_2 = R_2 I_2
\]

\[
I_2 = \frac{sL V_1}{(R_1 + sL)(R_2 + sL + 1/sC) - s^2 L^2}
\]

\[
Y_T = \frac{I_2}{V_1} = \frac{LCs^2}{(R_1 + R_2)LCs^2 + (L + R_1 R_2 C)s + R_1}
\]

\[
G_v = \frac{V_2}{V_1} = \frac{LCR_2 s^2}{(R_1 + R_2)LCs^2 + (L + R_1 R_2 C)s + R_1}
\]
12.2 정현파 주파수 해석 - 보드 선도 (Bode Plot)

■ 정현파의 정상상태 해석:

\[H(jw) = M(w)e^{j\phi(w)} \]

\[M(w) = |H(jw)|, \quad \phi(w) : \text{교류 특성 (magnitude characteristics)}, \quad \phi(w) : \text{위상 특성 (phase characteristics)} \]

■ 보드 선도 (Bode plot): 회로망의 크기 및 위상 주파수 응답을 반대수 (semilog) 눈금으로 그린 것 (수직은 선형, 수평은 대수 (log) scale)

\[\text{number of dB (대시벨)} = 20\log\frac{|V_2|}{|V_1|} \]

\[H(s) = \frac{K_0s^N(1+s\tau_1)(1+a_1s+a_2s^2)\ldots}{(1+s\tau_b)(1+b_1s+b_2s^2)\ldots} \]

\[H(jw) = \frac{K_0(jw)^N(1+jw\tau_1)[1+2\xi_3(jw\tau_3)+(jw\tau_3)^2]\ldots}{(1+jw\tau_a)[1+2\xi_b(jw\tau_b)+(jw\tau_b)^2]\ldots} \]

크기: \[20\log_{10}|H(jw)| = 20\log_{10}K_0 \pm 20N\log_{10}|jw| + 20\log_{10}|1+jw\tau_1| + 20\log_{10}|1+2\xi_3(jw\tau_3)+(jw\tau_3)^2| \ldots - 20\log_{10}|1+jw\tau_a| - 20\log_{10}|1+2\xi_b(jw\tau_b)+(jw\tau_b)^2| \]

위상: \[\angle H(jw) = 0 \pm 20N(90^\circ) + \tan^{-1}w\tau_1 + \tan^{-1}\frac{2\xi_3w\tau_3}{1-w^2\tau_3^2} + \ldots - \tan^{-1}w\tau_a - \tan^{-1}\frac{2\xi_bw\tau_b}{1-w^2\tau_b^2} \]
보드 선도(Bode Plot)

1) 상수항: 주파수에 무관한 \(20\log_{10} K_o\), 위상은 0

2a) 원점에 위치하는 영점 \([jw]^{+N}\):
크기 \(+20N\log_{10} w\), 즉 \(20N\) \(\text{dB/decade}\) 증가, 위상은 \(N(90^\circ)\)

2b) 원점에 위치하는 극점 \([jw]^{-N}\):
크기 \((-20N\log_{10} w\), 즉 \(-20N\) \(\text{dB/decade}\) 감소, 위상은 \(-N(90^\circ)\)
보드 선도 (Bode Plot)

3a) \((1 + jw\tau)^{\text{영태의 영점}}:\n\tau\quad \text{크기 늝} + 20\log_{10} |1 + jw\tau|' \quad \text{증가}
\begin{align*}
\text{직선 } 0dB \at \omega < < 1/\tau, \quad 20\log_{10} \omega^{\tau} ' \quad \text{증가} & , \quad 20dB / \text{decade} ' \quad \text{증가} @ \omega >> 1/\tau \\
\text{위상 } - \tan^{-1} \omega^{\tau} ' \quad \text{감소} & , \quad 0^\circ @ \omega < < 1/\tau, \quad 45^\circ @ \omega = 1/\tau, \quad 90^\circ @ \omega >> 1/\tau
\end{align*}

3b) \((1 + jw\tau)^{\text{영태의 극점}}:\n\tau\quad \text{크기 늝} + 20\log_{10} |1 + jw\tau|' \quad \text{감소}
\begin{align*}
\text{직선 } 0dB \at \omega < < 1/\tau, \quad 20\log_{10} \omega^{\tau} ' \quad \text{감소} & , \quad 20dB / \text{decade} ' \quad \text{감소} @ \omega >> 1/\tau \\
\text{위상 } - \tan^{-1} \omega^{\tau} ' \quad \text{감소} & , \quad 0^\circ @ \omega < < 1/\tau, \quad -45^\circ @ \omega = 1/\tau, \quad -90^\circ @ \omega >> 1/\tau
\end{align*}
보드 선도(Bode Plot)

\[\zeta = \text{감쇠비(damping ratio)}, \zeta < 1 \text{ 복소근인 경우(} \zeta > 1 \text{ 실근, } \zeta = 1 \text{ 단순 영점/극점)} \]

4a) \(1 + 2 \zeta (j \omega \tau) + (j \omega \tau)^2 \) 형태의 2차 영점

크기는 \(20 \log_{10} |1 + 2 j \zeta (w \tau) - (w \tau)^2| \)

\(\zeta,0 \text{dB} @ w << 1/\tau, 20 \log_{10} |(w \tau)^2|, 40 \text{dB} / \text{decade} @ w >> 1/\tau \)

위상은 \(0^\circ @ w << 1/\tau, 90^\circ @ w = 1/\tau, 180^\circ @ w >> 1/\tau \)

4b) \(1 + 2 \zeta (j \omega \tau) + (j \omega \tau)^2 \) 형태의 2차 극점

크기는 \(-20 \log_{10} |1 + 2 j \zeta (w \tau) - (w \tau)^2| \)

\(\zeta,0 \text{dB} @ w << 1/\tau, -20 \log_{10} |(w \tau)^2|, -40 \text{dB} / \text{decade} @ w >> 1/\tau \)

위상은 \(0^\circ @ w << 1/\tau, -90^\circ @ w = 1/\tau, -180^\circ @ w >> 1/\tau \)
예제 12.3

크기와 위상선도?

\[G_v(j\omega) = \frac{10(1+j\omega/10)}{(1+j\omega/1)(1+j\omega/50)} \]

zero(영점): \(w_{z1} = 10 \text{rad/s} \)

pole(각점): \(w_{p1} = 1 \text{rad/s}, w_{p2} = 50 \text{rad/s} \)
예제 12.4

크기와 위상선도?

\[G_v(jw) = \frac{25(1 + jw/1)}{(jw)^2(1 + jw/10)} \]

zero(영점): \(w_{z1} = 1 \text{ rad} / s \)

pole(극점): \(w_{p1} = 0 \text{ rad} / s, w_{p2} = 10 \text{ rad} / s \)
Bode plot?

\[
G_v(j\omega) = \frac{25(j\omega)}{(j\omega + 0.5)[(j\omega)^2 + 4j\omega + 100]} = \frac{0.5(j\omega)}{(1 + j\omega/0.5)[(j\omega/10)^2 + j\omega/25 + 1]}
\]

zero(영점) : \(w_{z1} = 0\ text{rad/s}\)

pole(극점) : \(w_{p1} = 0.5\ text{rad/s}, w_{p2,3} = 10\ text{rad/s}\)

\(\tau = 0.1, \zeta = 0.2\)
12.3 공진 회로 - 직렬 공진

\[Z(jw) = R + jwL + \frac{1}{jwC} = R + j(wL - \frac{1}{wC}) \]

(1) 공진주파수 (resonant frequency): \(w_0 = \frac{1}{\sqrt{LC}} \)

\[Z(jw) \text{에서} \quad \text{해석항이 zero, } Z(jw) \text{ 최소가 됨} \]

(2) 양호도 (quality factor), 혹은 Q 인자

\[Q = \frac{wL}{R} = \frac{1}{wC} \]
예제 12.7

\[Q : w_0, V_L, V_C, Q? \]

\[A : \omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{25m \times 10\mu}} = 2000rad / s \]

정전기 전류: \[I = \frac{V}{Z} = \frac{V_s}{R} = 5 \angle 0^\circ A \]

\[V_R = RI = 10 \angle 0^\circ V \]

\[V_L = j\omega_0 LI = 250 \angle 90^\circ V \]

\[V_C = \frac{I}{j\omega_0 C} = 250 \angle -90^\circ V \]

\[Q = \frac{w_0 L}{R} = \frac{2000 \times 25m}{2} = 25 \]

\[|V_L| = Q |V_S|, \quad |V_C| = Q |V_S|, \text{ 외상운동반대 } \]
예제 12.8

\[Q : Q = 200, L = 0.02H, f = 1000Hz, 300V \text{정격의 커패시터 사용, 설계 문제점?} \]

\[A : w_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.02 \times C}} = 2\pi \times 1000 rad/s, \therefore C = 1.27 \mu F \]

\[Q = \frac{w_0L}{R} = \frac{2000\pi \times 0.02}{R} = 200, \therefore R = 1.59\Omega \]

\[\text{공진현상: } I = \frac{V}{Z} = \frac{V_S}{1.59} = 6.28\angle 0^\circ A \]

\[|V_C| = Q |V_S| = 200 \times 10 = 2000V \]

\[300V \text{정격 커패시터 전기지지 못함!} \]
직렬 RLC Bandwidth

\[Y(jw) = \frac{1}{R[1 + j(wL / R - 1 / wRC)]} = \frac{1}{R[1 + jQ(w / w_0 - w_0 / w)]} \]

\[G_v(jw) = \frac{V_R}{V_i} = \frac{IR}{V_i} = \frac{YV_1}{V_1} = \frac{1}{1 + jQ(w / w_0 - w_0 / w)} = M(w) \angle \phi(w) \]

\[M(w) = \frac{1}{[1 + Q^2 (w / w_0 - w_0 / w)^2]^{1/2}}, \phi(w) = -\tan^{-1} Q(w / w_0 - w_0 / w) \]

BW (bandwidth) 정의: \(BW = w_{HI} - w_{LO}, M(w_{HI,LO}) = \frac{1}{\sqrt{2}} = -3dB \)

\[w_{LO} = w_0\left[-\frac{1}{2Q} + \sqrt{\left(\frac{1}{2Q}\right)^2 + 1}\right], w_{HI} = w_0\left[\frac{1}{2Q} + \sqrt{\left(\frac{1}{2Q}\right)^2 + 1}\right] \]

\[\therefore BW = \frac{w_0}{Q} \text{ (or } w_0^2 = w_{HI} \times w_{LO}) \]
RLC 회로 에너지

공진주파수에서 \(i(t) = \frac{V_m}{R} \cos \omega_0 t \)

\[
V_C = \frac{I}{j\omega_0 C} = \frac{V_m}{\omega_0 RC} \angle -90^\circ, v_c(t) = \frac{V_m}{\omega_0 RC} \cos(\omega_0 t - 90^\circ) = \frac{V_m}{\omega_0 RC} \sin \omega_0 t
\]

인덕터에 저장된 에너지 : \(w_L = \frac{1}{2} L i^2 = \frac{V_m^2 L}{2R^2} \cos^2 \omega_0 t \) [J]

캡시터에 저장된 에너지 :

\[
w_C = \frac{1}{2} C V^2 = \frac{V_m^2}{2 \omega_0^2 R^2 C} \sin^2 \omega_0 t = \frac{V_m^2}{2(1/LC) R^2 C} \sin^2 \omega_0 t = \frac{V_m^2 L}{2 R^2} \sin^2 \omega_0 t [J]
\]

총 에너지 : \(W_S = w_L + w_C = \frac{V_m^2 L}{2 R^2} \) = 일정, 즉 상수

즉, 총 에너지는 일정하고, \(L, C \) 의 에너지 는 없다. 같다 함 (그래프 참조)
RLC 회로 에너지 – Q의 의미

총 에너지: \(W_S = w_L + w_C = \frac{V_m^2 L}{2R^2} \)

단주기에흡수된 에너지: \(W_D = \int_0^T i^2(t)Rdt = \int_0^T \left(\frac{V_m}{R} \cos w_0 t \right)^2 Rdt = \frac{V_m^2 T}{2R} \)

\[\frac{W_S}{W_D} = \frac{L}{RT} = \frac{L}{R(2\pi/w_0)} = \frac{w_0 L / R}{2\pi} = \frac{Q}{2\pi} \]

\[Q = 2\pi \frac{W_S}{W_D} \]

예제 12.9: \(R = 2\Omega, L = 2mH, C = 5\mu F, w_0, Q, BW \)

Ans:

\[w_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{2m \times 5\mu}} = 10,000 rad / sec, f_0 = \frac{w_0}{2\pi} = 1592 Hz \]

\[Q = \frac{w_0 L}{R} = 10, BW = \frac{w_0}{Q} = 1000 rad / sec \]
예제 12.10 BPF 설계

\[Q : w_0 = 1000\text{rad/s}, BW = 100\text{rad/s}, BPF 설계 \]

\[\text{Ans} : \]

\[w_0 = \frac{1}{\sqrt{LC}} = 1000\text{rad/s}, \therefore \frac{1}{LC} = 10^6 (1) \]

\[BW = \frac{w_0}{Q} = \frac{w_0}{w_0 L / R} = 100\text{rad/s}, \therefore \frac{R}{L} = 100 (2) \]

시2개, 미지수3개, let \(C = 1\mu F \)

\[\therefore L = 1H, R = 100\Omega \]
\[w_{\text{max}},|V_o|_{\text{max}}? \]

\[
V_o = V_s \frac{1}{jwC} \frac{1}{R + jwL + 1/jwC} = \frac{V_s}{1 - w^2LC + jwCR}
\]

\[
|V_o| = \frac{|V_s|}{\sqrt{(1 - w^2LC)^2 + (wCR)^2}}
\]

\[
\frac{d|V_o|}{dw} = 0 \Rightarrow w_{\text{max}} = \sqrt{\frac{1}{LC} - \frac{1}{2} \left(\frac{R}{L}\right)^2} = w_0 \sqrt{1 - \frac{1}{2Q^2}} \approx w_0 (Q >> 1)
\]

\[
|V_o|_{\text{max}} = \frac{Q|V_s|}{\sqrt{1 - 1/4Q^2}} \approx Q|V_s|
\]
예제 12.11

\[Q : L = 50 \text{mH}, C = 5 \mu \text{F}, R = 50 \text{(or 1)} \Omega, w_0, w_{\text{max}} ? \]

\[A : \]

\[w_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{50 \text{m} \times 5 \mu}} = 2000 \text{rad} / s \]

\[Q = \frac{w_0 L}{R} = 2 \text{(or 100)} \]

\[w_{\text{max}} = w_0 \sqrt{1 - \frac{1}{2Q^2}} = 1871 \text{(or 2000)} \text{rad} / s \]
12.3 공진 회로 - 병렬 공진

\[Y(jw) = G + jwC + \frac{1}{jwL} = G + j\left(\frac{C}{L} - \frac{1}{wL}\right) \]

(1) 공진주파수 (resonant frequency): \(w_0 = \frac{1}{\sqrt{LC}} \)

\[Y(jw) \] 에서 허수상이 zero, 즉 \(|Y(jw)|\) 최소가 됨

(2) 양호도 (quality factor), 혹은 \(Q\) 인자

\[Q = \frac{R}{w_0L} = \frac{R}{\left(1/\omega_0C\right)} \]

\[|I_C| = Q |I_S|, \quad |I_L| = Q |I_S| \]

\[\text{(a)} \quad |Y| \]

\[\omega C - \frac{1}{\omega L} \]

\[\text{(b)} \quad \omega < \omega_0 \quad \omega = \omega_0 \quad \omega > \omega_0 \]
Q: \(V_S = 120°, G = 0.01S, C = 600 \mu F, L = 120mH \)

\(w = w_0, \text{Branch Currents?} \)

\[A: \]

\[
w_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{120 m \times 600 \mu}} = 117.85 \, \text{rad} / \text{s}
\]

\(Y_C = jw_0 C = j70.7 \, \text{mS}, Y_L = -j/(w_0 L) = -j70.7 \, \text{mS} \)

\(I_G = GV_S = 1.2 \angle 0° \)

\(I_C = Y_C V_S = 8.49 \angle 90°, I_L = Y_L V_S = 8.49 \angle -90° \)

\(I_S = I_G + I_C + I_L = 1.2 \angle 0° \)
예제 12.14

\[
\frac{V_{\text{out}}}{I_{\text{in}}} = Z = \frac{1}{Y} = \frac{1}{G + jwC + 1/ jwL}, \quad \left| \frac{V_{\text{out}}}{I_{\text{in}}} \right| = \frac{1}{\sqrt{G^2 + (wC - 1/ wL)^2}}
\]

\[
\left| \frac{V_{\text{out}}}{I_{\text{in}}} \right|_{\text{max}} = \frac{1}{G} = R \quad @ w = w_0 = \frac{1}{\sqrt{LC}}
\]

반전압주파수: \[\left| \frac{V_{\text{out}}}{I_{\text{in}}}(w = w_{LO,\text{HI}}) \right| = \left| \frac{V_{\text{out}}}{I_{\text{in}}} \right|_{\text{max}} / \sqrt{2}\]

\[
w_{LO} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}, \quad w_{HI} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}
\]

\[
BW = w_{HI} - w_{LO} = \frac{1}{RC}, \quad Q = \frac{w_0}{BW} = \frac{RC}{\sqrt{LC}} = R\sqrt{C/L}
\]

![Circuit Diagram](image-url)
예제 12.15

- 방송국 1 100MHz, 방송국 2 98MHz, 1단 동조 증폭기 선택성 나쁨.
- 여러단 동조 증폭기 직렬 연결 => Q 향상
- PSPICE 이용
일반적인 병렬 공진 회로

- 인덕터의 전항은 무시 못함 => 그림

\[
Y(j\omega) = j\omega C + \frac{1}{R + j\omega L} = \frac{R}{R^2 + \omega^2 L^2} + j\left(\frac{\omega C}{R^2 + \omega^2 L^2}\right)
\]

\[
\text{여수항 } = 0, \text{공진주파수 } w_r = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}
\]

- 예제 12.16

\[
R = 50(\text{or } 5)\Omega, w_0, w_r ?
\]

\[
w_0 = \frac{1}{\sqrt{LC}} = 2000\text{rad/s, } f_0 = w_0 / 2\pi = 318.3\text{Hz}
\]

\[
R = 50\Omega: w_r = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}} = 1732.4\text{rad/s, } f_0 = 275.7\text{Hz}
\]

\[
R = 5\Omega: w_r = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}} = 1997\text{rad/s, } f_0 = 317.9\text{Hz}
\]
Q와 ζ 관계

직렬 공진 회로

\[
Y(j\omega) = \frac{1}{R + j\omega L + 1/j\omega C}
\]

\[
= \frac{j\omega C}{(j\omega)^2 LC + j\omega RC + 1} = \frac{j\omega C}{(j\omega/w_0)^2 + 2\zeta w_0 \tau + 1} (\tau = 1/w_0)
\]

\[
\therefore w_0^2 = \frac{1}{LC}, \zeta = \frac{R}{2 \sqrt{L}} (감쇄비, damping ratio)
\]

또한 \[Q = \frac{w_0 L}{R} = \frac{1}{R \sqrt{C}} \]

\[\therefore Q = \frac{1}{2\zeta}\]
12.4 스케일링

■ 크기 스케일링 (magnitude scaling) (or 임피던스 스케일링)

\[R' \rightarrow K_M R, \quad L' \rightarrow K_M L, \quad C' \rightarrow C / K_M \]

\[w_0' = \frac{1}{\sqrt{L' C'}} = \frac{1}{\sqrt{K_M L' C / K_M}} = w_0 \]

\[Q' = \frac{w_0' L'}{R'} = \frac{w_0 K_M L}{K_M R} = Q \cdot \text{주파수 변환, } Q \text{는 영향 받지 않음} \]

■ 주파수 스케일링

\[w_1' = K_F w_1 \]

\[R' \rightarrow R, \quad L' \rightarrow L / K_F, \quad C' \rightarrow C / K_F \]

\[(jw_1' L' = j(K_F w_1)(L / K_F) = jw_1 L) \]

\[w_0' = \frac{1}{\sqrt{L' C'}} = \frac{1}{\sqrt{L / K_F C / K_F}} = K_F w_0, \quad BW' = K_F BW \]

\[Q' = \frac{w_0' L'}{R'} = \frac{K_F w_0 (L / K_F)}{R} = Q \cdot \text{주파수 변환, } Q \text{는 영향 받지 않음} \]
12.5 필터 회로망 - 수동 필터

- 저역 통과 필터

\[G_v(jw) = \frac{1}{jwC} = \frac{1}{R + \frac{1}{jwC}} = \frac{1}{1 + jwRC} = \frac{1}{1 + jw\tau} \]

\[\tau = RC(\text{시간상수}, \text{time constant}) \]

크기 \(M(w) = \frac{1}{\sqrt{1 + (w\tau)^2}} \), 위치 \(\phi(w) = -\tan^{-1}w\tau \)

\[w = \frac{1}{\tau} \] : 반전 주파수, 반전주파수 (half-power frequency)
수동 필터

고역 통과 필터

\[G_v(j\omega) = \frac{R}{1/j\omega C + R} = \frac{j\omega RC}{1 + j\omega RC} = \frac{j\omega \tau}{1 + j\omega \tau} \]

\[\tau = RC(\text{시간상수, time constant}) \]

\[M(w) = \frac{w\tau}{\sqrt{1 + (w\tau)^2}}, \quad \phi(w) = \frac{\pi}{2} - \tan^{-1}w\tau \]

\[w = \frac{1}{\tau} \quad \text{(반전력주파수, 반전력주파수(half-power frequency))} \]
수동 필터

대역 통과 필터

\[G_v(jw) = \frac{R}{jwL + 1/jwC + R} \]

\[G_v(jw) \bigg|_{w=0} \approx \frac{R}{1/jwC} = jwRC \approx 0 \]

\[G_v(jw) \bigg|_{w=w_0} \approx \frac{R}{R} = 1 \]

\[G_v(jw) \bigg|_{w=\infty} \approx \frac{R}{jwL} \approx 0 \]

\[|G_v(jw)|_{w=w_{LO},w_{HI}} = \frac{1}{\sqrt{2}} \]

\[w_{LO} = \frac{-(R/L) + \sqrt{(R/L)^2 + 4w_0^2}}{2} \]

\[w_{HI} = \frac{+(R/L) + \sqrt{(R/L)^2 + 4w_0^2}}{2} \]

\[BW = w_{HI} - w_{LO} = \frac{R}{L} \]
예제 12.18

(1) \[
\frac{V_R}{V_S}(jw) = \frac{R}{jwL + 1/jwC + R} = \frac{jw(R/L)}{(jw)^2 + jw(R/L) + 1/LC}
\]

\[
\frac{V_R}{V_S} \bigg|_{w=0} \approx 0, \quad \frac{V_R}{V_S} \bigg|_{w=\infty} \approx 0, \quad \frac{V_R}{V_S} \bigg|_{w=w_0} \approx 1, \therefore \text{BPF}
\]

(2) \[
\frac{V_L}{V_S}(jw) = \frac{jwL}{jwL + 1/jwC + R} = \frac{-w^2}{(jw)^2 + jw(R/L) + 1/LC}
\]

\[
\frac{V_R}{V_S} \bigg|_{w=0} \approx 0, \quad \frac{V_R}{V_S} \bigg|_{w=\infty} \approx 1, \quad \frac{V_R}{V_S} \bigg|_{w=w_0} \approx \frac{jwL}{R} = jQ, \therefore \text{HPF}(2\pi f)
\]

(3) \[
\frac{V_C}{V_S}(jw) = \frac{1/jwC}{jwL + 1/jwC + R} = \frac{1/LC}{(jw)^2 + jw(R/L) + 1/LC}
\]

\[
\frac{V_R}{V_S} \bigg|_{w=0} \approx 1, \quad \frac{V_R}{V_S} \bigg|_{w=\infty} \approx 0, \quad \frac{V_R}{V_S} \bigg|_{w=w_0} \approx \frac{1}{jwRC} = -jQ, \therefore \text{LPF}(2\pi f)
\]
능동 필터

- 수동 필터: 이득 1 이상 불가능, L 부피 차지/고가
- 능동 필터: 이득 1 이상 가능, L을 능동소자(예 OPAMP) 만으로 구현가능
- 연산 증폭 회로
예제 12.20

\[Z_1 = R_{10}, \quad Z_2 = \frac{R_2 / jwC}{R_2 + 1/ jwC} = \frac{R_2}{jwR_2C + 1} \]

\[G_v(jw) = \frac{V_o}{V_1} = -\frac{Z_2}{Z_1} = -\frac{R_2 / R_1}{jwR_2C + 1} : \text{LPF} \]

예제 12.21

\[Z_1 = \frac{1}{jwC_1}, \quad Z_2 = \frac{R}{jwRC_2 + 1} \]

\[G_v(jw) = \frac{V_o}{V_1} = 1 + \frac{Z_2}{Z_1} = \frac{1 + jw\tau_1}{1 + jw\tau_2} \]

\[\tau_1 = R(C_1 + C_2), \quad \tau_2 = RC_2 \]
예제: PSPICE 사용

■ 예제 12.22

![Circuit Diagram](image)

■ 예제 12.23

![Circuit Diagram](image)
2차 LPF

\[H(s) = \frac{V_o(s)}{V_{in}(s)} = \frac{-\left(\frac{R_3}{R_1}\right)\left(\frac{1}{R_3R_2C_2C_1}\right)}{s^2 + s\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1} + \frac{1}{R_3C_1}\right) + \frac{1}{R_3R_2C_2C_1}} \]

\[= \frac{H_0w_c^2}{s^2 + 2\zeta w_c s + w_c^2} \]

\[w_c : \text{차단주파수}, \zeta : \text{감쇠비(damping ratio)} \]

■ 예제 12.24, 12.25, 12.26
2차 BPF

\[
H(s) = \frac{V_o(s)}{V_s(s)} = \frac{-(\frac{1}{R_1C_1})s}{s^2 + s(\frac{1}{R_2C_1} + \frac{1}{R_2C_2}) + \frac{1+R_1/R_3}{R_1R_2C_1C_2}}
\]

\[
= \frac{sH_0}{s^2 + \frac{w_0}{Q} s + w_0^2}
\]

\[
Q = \sqrt{\frac{1+R_1/R_3}{1+C_1/C_2}} \sqrt{\frac{R_2C_1}{R_1C_2}}
\]

\[
BW = w_{Hi} - w_{LO} = \frac{w_0}{Q} = \frac{1}{R_2} \left(\frac{1}{C_1} + \frac{1}{C_2} \right)
\]

\[
\left| \frac{V_o}{V_s} \right|_{w=w_0} = \frac{QH_0}{w_0} = -\frac{R_2}{R_1} (1 + \frac{1}{C_1/C_2})
\]

- 예제 12.27, 12.28, 12.29
\[
\frac{V_R(s)}{V_S} = \frac{s(R/L)}{s^2 + s(R/L) + 1/LC}
\]