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Combinational vs  Sequential LogicCombinational vs  Sequential LogicCombinational vs. Sequential LogicCombinational vs. Sequential Logic
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Static CMOS CircuitStatic CMOS CircuitStatic CMOS CircuitStatic CMOS Circuit

A i i i ( d i h i hiAt every point in time (except during the switching 
transients) each gate output is connected to either
VDD or V via a low-resistive pathVDD or Vss via a low-resistive path. 

The outputs of the gates assume at all times the value 
of the Boolean function, implemented by the circuitof the Boolean function, implemented by the circuit 
(ignoring, once again, the transient effects during 
switching periods). 

This is in contrast to the dynamic circuit class, which 
relies on temporary storage of signal values on the 
capacitance of high impedance circuit nodes. 
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Static Complementary CMOSStatic Complementary CMOSStatic Complementary CMOSStatic Complementary CMOS
VDDVDD

In1
I 2 PUN PMOS only

F(In1,In2,…InN)

In2

InN

PUN PMOS only

( , , )
In1
In2 PDN

NMOS onlyInN NMOS only

PUN (pull-up network) and PDN (pull-down network) are dual logic networks
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NMOS Transistors NMOS Transistors 
i  S i /P ll l C tii  S i /P ll l C tiin Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

A

X Y
B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1
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PMOS Transistors PMOS Transistors 
i  S i /P ll l C tii  S i /P ll l C tiin Series/Parallel Connectionin Series/Parallel Connection

PMOS switch closes when switch control input is low

A B

PMOS switch closes when switch control input is low

X Y

A B

Y = X if A AND B = A + BY

A

X Y
B Y = X if A OR B = AB
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Threshold DropsThreshold DropsThreshold DropsThreshold Drops
VDD VDDDDPUN DD

VDD

S D

0 → VDD 0 → VDD - VTn
D S

VGS

V 0PDN

CL CL

V |V |VDD → 0PDN

CLVDD

VDD → |VTp|

CL
SD

VGS

DD

S D
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Complementary CMOS Logic StyleComplementary CMOS Logic StyleComplementary CMOS Logic StyleComplementary CMOS Logic Style
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Example Gate: NANDExample Gate: NANDExample Gate: NANDExample Gate: NAND
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Example Gate: NORExample Gate: NORExample Gate: NORExample Gate: NOR
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Complex CMOS GateComplex CMOS GateComplex CMOS GateComplex CMOS Gate

A
B

A
C

OUT = D + A • (B + C)

D

D
A

B C

EE141© Digital Integrated Circuits2nd Combinational Circuits
11



Constructing a Complex GateConstructing a Complex GateConstructing a Complex GateConstructing a Complex Gate
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Cell DesignCell DesignCell DesignCell Design

Standard Cells
General purpose logicGeneral purpose logic
Can be synthesized
Same height varying widthSame height, varying width

Datapath Cells
For regular, structured designs (arithmetic)
Includes some wiring in the cell
Fixed height and width
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Standard Cell Layout Methodology Standard Cell Layout Methodology ––
198019801980s1980s

Routing
h lchannel

VDD

signalsg

GND
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Standard Cell Layout Methodology Standard Cell Layout Methodology ––
199019901990s1990s

No Routing V

Mirrored Cell

No Routing
channels VDD

VDD

M2

M3 GNDM3

GNDMirrored Cell
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Standard CellsStandard CellsStandard CellsStandard Cells
N Well

C ll h i ht 12 t l t kCell height 12 metal tracks
Metal track is approx. 3λ + 3λ
Pitch = 
repetitive distance between objects

VDD

repetitive distance between objects

Cell height is “12 pitch”

In
Out

2λ
In

Cell boundary
Rails ~10λ

GND
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Standard CellsStandard CellsStandard CellsStandard Cells
VDD VDDWith silicided 

diffusion
With minimal
diffusion
routing

VDD

In
Out In Out

O tIn

M2
InOutIn

M1

GND GND
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Standard CellsStandard CellsStandard CellsStandard Cells

VDD 2-input NAND gate

VDD

B
A B

B

Out
A

GND
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Stick DiagramsStick DiagramsStick DiagramsStick Diagrams

Contains no dimensions
Represents relative positions of transistors

VDD
Inverter

VDD

NAND2

Out

Inverter

Out

NAND2

In

Out

A

Out

B
GND

A
GND

B
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Stick DiagramsStick DiagramsStick DiagramsStick Diagrams

A
Cj

X

C

PUNLogic Graph

X C (A + B)

B

VDDX i

C

C

X = C • (A + B)

i j

DDX

AB

A B

j

GND
PDN

A GNDA
B
C
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Two Versions of C Two Versions of C •• (A + B)(A + B)Two Versions of C Two Versions of C •• (A + B)(A + B)

CA B A B C

VDDVDD

X X

GNDGND
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Consistent Euler PathConsistent Euler PathConsistent Euler PathConsistent Euler Path

X

VX i

C

j

VDDX i

AB j

GND

AB

A B CGND A B C
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OAI22 Logic GraphOAI22 Logic GraphOAI22 Logic GraphOAI22 Logic Graph

A X PUNC

B D

VX

CD

C

X = (A+B)•(C+D) VDDX

ABD

A B
GND

AB

PDNA GNDA
B
C
D
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Example: x = ab+cdExample: x = ab+cdExample: x  ab cdExample: x  ab cd
x x

b c

VDDx

b c

VDDx

GND

a d

GND

a d

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

VDD

x

a c d

GND

(c) stick diagram for ordering {a b c d}
b
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MultiMulti--Fingered TransistorsFingered TransistorsMultiMulti--Fingered TransistorsFingered Transistors
O  fiOne finger Two fingers (folded)

Less diffusion capacitancep
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Properties of Complementary CMOS Gates Properties of Complementary CMOS Gates 
S h tS h tSnapshotSnapshot

High noise margins: 
VOH and VOL are at VDD and GND, respectively. 

No static power consumption:No static power consumption:
There never exists a direct path between VDD and 
VSS (GND) in steady-state modeVSS (GND) in steady state mode. 

Comparable rise and fall times:
(under appropriate sizing conditions) 
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CMOS PropertiesCMOS PropertiesCMOS PropertiesCMOS Properties
Full rail to rail swing; high noise marginsFull rail-to-rail swing; high noise margins
Logic levels not dependent upon the relative 
device sizes; ratiolessdevice sizes; ratioless
Always a path to Vdd or Gnd in steady state; 
low output impedancelow output impedance
Extremely high input resistance; nearly zero 
steady state input currentsteady-state input current
No direct path steady state between power 
and ground; no static power dissipationand ground; no static power dissipation
Propagation delay function of load 
capacitance and resistance of transistors
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Switch Delay ModelSwitch Delay ModelSwitch Delay ModelSwitch Delay Model
ReqA

A
eqA

R

RpRp
A

Rp

B

Rp
B

Rp

A
p

A
p

CL
Rn A

Rp Cint

A

Rn CLB

Rn C
Rn Rn CL

A

Rn Cint A B
L

NAND2 INV NOR2
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Input Pattern Effects on DelayInput Pattern Effects on DelayInput Pattern Effects on DelayInput Pattern Effects on Delay

Delay is dependent on 
the pattern of inputsRp Rp

Low to high transition
both inputs go low

R

A
p

B
p

g
– delay is 0.69 Rp/2 CL

one input goes low
d l i 0 69 R C

CL

B

Rn

– delay is 0.69 Rp CL

High to low transition
b th i t hi hA

Rn Cint

both inputs go high
– delay is 0.69 2Rn CL
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Delay Dependence on Input PatternsDelay Dependence on Input PatternsDelay Dependence on Input PatternsDelay Dependence on Input Patterns

2.5

3

A=B=1→0
Input Data

Pattern
Delay
(psec)

1 5

2

2.5

A=1 →0, B=1

V
]

Pattern (psec)
A=B=0→1 67

A=1 B=0→1 64

1

1.5

A=1, B=1→0

ol
ta

ge
 [V

A 1, B 0→1 64

A= 0→1, B=1 61

A=B=1→0 45

0

0.5

0 100 200 300 400

Vo

A=B=1→0 45

A=1, B=1→0 80

A 1 0 B 1 81-0.5
0 100 200 300 400

time [ps]

A= 1→0, B=1 81

NMOS = 0.5μm/0.25 μm
PMOS = 0 75μm/0 25 μm
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Transistor SizingTransistor SizingTransistor SizingTransistor Sizing

Rp Rp Rp

2 2 4

CR

A B B

Rp Ci

2 2 4

4CL

B

Rn
A

p Cint

2
4

A

Rn Cint

A

Rn

B

Rn CL2 1
11

EE141© Digital Integrated Circuits2nd Combinational Circuits
31



Transistor Sizing a Complex Transistor Sizing a Complex 
CMOS GateCMOS Gate

B 8 6
A

C
4

8
3

6

OUT = D + A • (B + C)

D 4 6

OUT  D  A  (B  C)

D
A

1

2

B C
1

2 2
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FanFan--In ConsiderationsIn ConsiderationsFanFan--In ConsiderationsIn Considerations

DCBA DCBA

A CL Distributed RC model

C

B
L

C3

Distributed RC model
(Elmore delay)

D

C C2

C1

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deterioratesPropagation delay deteriorates 
rapidly as a function of fan-in –
quadratically in the worst case.
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tt as a Function of Fanas a Function of Fan--InInttpp as a Function of Fanas a Function of Fan--InIn

1000

1250
quadratic

ec
)

Gates with a 
fan-in 750

t

t p
(p

se greater than 
4 should be 
avoided250

500
tpH

L

tp

tpL

H

avoided.

0

250
linear

fan-in
2 4 6 8 10 12 14 16
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tt as a Function of Fanas a Function of Fan--OutOutttpp as a Function of Fanas a Function of Fan--OutOut

tpNOR2
All gates 
have the tpNAND2

ec
)

same drive 
current.tpINV

t p
(p

se

Slope is aSlope is a 
function of 
“driving 

2 4 6 8 10 12 14 16
eff. fan-out

strength”
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tt as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOutttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing 
resistance and capacitanceresistance and capacitance
Fan-out: each additional fan-out gate 
adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO
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Fast Complex Gates:Fast Complex Gates:
D i  T h i  1D i  T h i  1Design Technique 1Design Technique 1

T i t i iTransistor sizing
as long as fan-out capacitance dominatesg

Progressive sizing

InN CLMN
Distributed RC line

M1 > M2 > M3 > … > MN

C3
In3 M3

(the fet closest to the
output is the smallest)

C2

C1
In1

In2

M1

M2 Can reduce delay by more than 
20%; decreasing gains as 
t h l h i k
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Fast Complex Gates:Fast Complex Gates:
Design Technique 2Design Technique 2

Transistor ordering

critical path critical path

In

In3 M3 CL

CIn2

In1

M2

M3 CL

1

charged1

1

0→1 charged

dischargedC2

C1
In1

In2

M1

M2 C2

C1
In3

In2

M1

M2charged1

0→1
charged 1 discharged

discharged

0→1

delay determined by time to 
discharge CL, C1 and C2

delay determined by time to 
discharge CL
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Fast Complex Gates:Fast Complex Gates:
D i  T h i  3D i  T h i  3Design Technique 3Design Technique 3
Alternative logic structures

F = ABCDEFGHF  ABCDEFGH
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Fast Complex Gates:Fast Complex Gates:
D i  T h i  4D i  T h i  4Design Technique 4Design Technique 4

Isolating fan-in from fan-out using buffer 
insertioninsertion

C CCL
CL
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Fast Complex Gates:Fast Complex Gates:
D i  T h i  5D i  T h i  5Design Technique 5Design Technique 5

Reducing the voltage swing

t = 0 69 (3/4 (C V )/ I )tpHL = 0.69 (3/4 (CL VDD)/ IDSATn )

= 0.69 (3/4 (CL Vswing)/ IDSATn )
linear reduction in delay
also reduces power consumption

 0.69 (3/4 (CL Vswing)/ IDSATn )

also reduces power consumption
But the following gate is much slower!
Or requires use of “sense amplifiers” on theOr requires use of sense amplifiers  on the 
receiving end to restore the signal level 
(memory design)
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Sizing Logic Paths for SpeedSizing Logic Paths for SpeedSizing Logic Paths for SpeedSizing Logic Paths for Speed

Frequently, input capacitance of a logic path 
is constrained
Logic also has to drive some capacitance
Example: ALU load in an Intel’s p
microprocessor is 0.5pF
How do we size the ALU datapath to achieve p
maximum speed?
We have already solved this for the inverter y
chain – can we generalize it for any type of 
logic?
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Buffer ExampleBuffer ExampleBuffer ExampleBuffer Example

In Out

CL1 2 N

( )∑
=

⋅+=
N

i
iii fgpDelay

1
(in units of τinv)

For given N: Ci+1/Ci = Ci/Ci-1
To find N: Ci+1/Ci ~ 4
How to generalize this to any logic path?
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Logical EffortLogical EffortLogical EffortLogical Effort
CCRkDelay L

⎟⎟
⎞

⎜⎜
⎛

+⋅= 1

( )fgp
C

CRkDelay
in

unitunit

⋅+=

⎟⎟
⎠

⎜⎜
⎝

+=

τ
γ

1

( )fgp
p – intrinsic delay (3kRunitCunitγ) - gate parameter ≠ f(W)
g – logical effort (kRunitCunit) – gate parameter ≠ f(W)g g ( unit unit) g p ( )
f – effective fanout

N li thi t i tNormalize everything to an inverter:
ginv =1, pinv = 1

Divide everything by τinv
(everything is measured in unit delays τinv)
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Delay in a Logic GateDelay in a Logic GateDelay in a Logic GateDelay in a Logic Gate

Gate delay:
d = h + pp

effort delay intrinsic delay

Effort delay:

h = g fg

logical 
effort

effective fanout  = 
C /Ceffort Cout/Cin

Logical effort is a function of topology, independent of sizing
Effective fanout (electrical effort) is a function of load/gate size
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Logical EffortLogical EffortLogical EffortLogical Effort

Inverter has the smallest logical effort and 
intrinsic delay of all static CMOS gatest s c de ay o a stat c C OS gates
Logical effort of a gate presents the ratio of its 
input capacitance to the inverter capacitanceinput capacitance to the inverter capacitance 
when sized to deliver the same current
Logical effort increases with the gateLogical effort increases with the gate 
complexity
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Logical EffortLogical EffortLogical EffortLogical Effort
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Logical Effort of GatesLogical Effort of GatesLogical Effort of GatesLogical Effort of Gates

y 
(d

)
tpINV

tpNAND
g =

ze
d 

de
la

y tpINV

g =

g 
p =
d =

N
or

m
al

i

p =
d =

1 2 3 4 5 6 7

F(Fan-in)

Fan-out (h)
1 2 3 4 5 6 7 
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Logical Effort of GatesLogical Effort of GatesLogical Effort of GatesLogical Effort of Gates

y 
(d

)
tpINV

tpNAND
g = 4/3

ze
d 

de
la

y tpINV

g = 1

g  4/3
p = 2
d = (4/3)h+2

N
or

m
al

i

p = 1
d = h+1

1 2 3 4 5 6 7

F(Fan-in)

Fan-out (h)
1 2 3 4 5 6 7 
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Logical Effort of GatesLogical Effort of GatesLogical Effort of GatesLogical Effort of Gates

EE141© Digital Integrated Circuits2nd Combinational Circuits
50



Add Branching EffortAdd Branching EffortAdd Branching EffortAdd Branching Effort

Branching effort: 

pathon

pathoffpathon
C

CC
b

−

−− +
=

pathon

EE141© Digital Integrated Circuits2nd Combinational Circuits
51



Multistage NetworksMultistage NetworksMultistage NetworksMultistage Networks

( )∑
=

⋅+=
N

i
iii fgpDelay

1

Stage effort: hi = gifi

i 1

Path electrical effort: F = Cout/Cin

Path logical effort: G = g1g2 gNPath logical effort: G  g1g2…gN

Branching effort: B = b1b2…bN

Path effort: H = GFB

Path delay D = Σdi = Σpi + Σhi
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Optimum Effort per StageOptimum Effort per StageOptimum Effort per StageOptimum Effort per Stage

HhN

When each stage bears the same effort:

HhN =
N Hh =

Eff ti f t f h t hf

Stage efforts: g1f1 = g2f2 = …  = gNfN

Minimum path delay

Effective fanout of each stage: ii ghf =

( ) PNHpfgD N
iii +=+= ∑ /1ˆ

u pat de ay
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Optimal Number of StagesOptimal Number of StagesOptimal Number of StagesOptimal Number of Stages
For a given loadFor a given load, 
and given input capacitance of the first gate
Find optimal number of stages and optimal sizingFind optimal number of stages and optimal sizing

N NpNHD += /1
invNpNHD +=

( ) 0ln /1/1/1 ++
∂ NNN HHHD ( ) 0ln /// =++−=
∂ inv

NNN pHHH
N

NHh ˆ/1=Substitute ‘best stage effort’
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Logical EffortLogical EffortLogical EffortLogical Effort

From Sutherland Sproull
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Example: Optimize PathExample: Optimize PathExample: Optimize PathExample: Optimize Path
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Example: Optimize PathExample: Optimize PathExample: Optimize PathExample: Optimize Path
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Example: Optimize PathExample: Optimize PathExample: Optimize PathExample: Optimize Path

 1 
a

b c 
5a 5

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1

Effective fanout, H = 5
G = 25/9

g1  1 g2  5/3 g3  5/3 g4

G = 25/9
F = 125/9 = 13.9
f = 1.93
a = 1.93
b = fa/g2 = 2.23

fb/ 5 /f 2 59
EE141© Digital Integrated Circuits2nd Combinational Circuits
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Example Example –– 88--input ANDinput ANDExample Example –– 88--input ANDinput AND
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Method of Logical EffortMethod of Logical EffortMethod of Logical EffortMethod of Logical Effort

Compute the path effort: F = GBH
Find the best number of stages N ~ log FFind the best number of stages N  log4F
Compute the stage effort f = F1/N

Sk h h h i h hi b fSketch the path with this number of stages
Work either from either end, find sizes: 
Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.
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SummarySummarySummarySummary

Sutherland,
S llSproull
Harris
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Ratioed LogicRatioed LogicRatioed LogicRatioed Logic
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Ratioed LogicRatioed LogicRatioed LogicRatioed Logic

VDD VDD VDD

Resistive Depletion PMOS

F

RLLoad

F F
VSS

es s ve Depletion
Load

PMOS
LoadVT < 0

PDN
In1
In2
In3

In1
In2
In3

PDN
In1
In2
In3

PDN

VSS VSS VSS

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

Goal: to reduce the number of devices over complementary CMOS
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Ratioed LogicRatioed LogicRatioed LogicRatioed Logic
VDD

Load
Resistive

N transistors + Load

• VOH = VDD

•

RLLoad OH DD

• VOL = RPN

In1

F RPN + RL

• Assymetrical response
PDNIn2

In3

 Assymetrical response

• Static power consumption

VSS
• tpL= 0.69 RLCL
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Active LoadsActive LoadsActive LoadsActive Loads
VDD VDD

Depletion
Load

PMOS
LoadVT < 0

F F

VSS

Load LoadT

In1
In2
In

PDN
In1
In2
In

F

PDN

VSS

In3

VSS

In3

SS SS

depletion load NMOS pseudo-NMOS
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PseudoPseudo--NMOSNMOSPseudoPseudo NMOSNMOS

VDD

A B C D

F
CL

VOH = VDD (similar to complementary CMOS)

2
kn VDD VTn–( )VOL

VOL
2

2
-------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞ kp

2
------ VDD VTp–( )

2
=

VOL VDD VT–( ) 1 1
kp
kn
------–– (assuming that VT VTn VTp )= = =
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PseudoPseudo--NMOS VTCNMOS VTCPseudoPseudo--NMOS VTCNMOS VTC

3.0

2.0

2.5

W/Lp = 4

1.5

t
[V

]

p 

W/L = 2

0.5

1.0V
ou

t W/Lp = 2

W/Lp = 1W/Lp = 0.5

0.0 0.5 1.0 1.5 2.0 2.5
0.0

V [V]

W/Lp = 0.25
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Improved LoadsImproved LoadsImproved LoadsImproved Loads

VDD

M1
M2 M1 >> M2Enable

F

C
A B C D

CL

Adaptive Load
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Adaptive Load



Improved Loads (2)Improved Loads (2)Improved Loads (2)Improved Loads (2)
VDD VDD

M1 M2

Out Out

M1 M2

PDN1 PDN2
A
A
B

VSS VSS

B
B

VSS VSS

Differential Cascode Voltage Switch Logic (DCVSL)
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DCVSL ExampleDCVSL ExampleDCVSL ExampleDCVSL Example

O

Out

Out

B B B B

A A

XOR NXOR t
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DCVSL Transient ResponseDCVSL Transient ResponseDCVSL Transient ResponseDCVSL Transient Response

2.5

A B
1.5

ol
ta

ge
[V

] A B

A B

A B
0.5

V

A,B
A,B

0 0.2 0.4 0.6 0.8 1.0-0.5

Time [ns]
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PassPass--TransistorTransistor
LogicLogic
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PassPass--Transistor LogicTransistor LogicPassPass Transistor LogicTransistor Logic

O A

B

In
pu

ts Switch

Network

Out
Out

A

B
B

B

• N transistors
• No static consumption
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Example: AND GateExample: AND GateExample: AND GateExample: AND Gate
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NMOSNMOS--Only LogicOnly LogicNMOSNMOS--Only LogicOnly Logic

3.0

In

VDD

In

x
1.5μm/0.25μm 2.0

e
[V

]

x
Out

In

DD
Out0.5μm/0.25μm

0.5μm/0.25μm 1.0Vo
lta

ge
0 0.5 1 1.5 20.0

Time [ns][ ]
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NMOSNMOS--only Switchonly SwitchNMOSNMOS only Switchonly Switch

C = 2.5V

A 2 5 V

C = 2.5 V

M2
A = 2.5 V

B

CL

A = 2.5 V B

M1

Mn

CL 1

Th h ld lt l
VB does not pull up to 2.5V, but 2.5V -VTN

Threshold voltage loss causes
static power consumption

NMOS has higher threshold than PMOS (body effect)

EE141© Digital Integrated Circuits2nd Combinational Circuits
76

NMOS has higher threshold than PMOS (body effect)



NMOS Only Logic: NMOS Only Logic: 
Level Restoring TransistorLevel Restoring TransistorLevel Restoring TransistorLevel Restoring Transistor

M

VDD
VDDLevel Restorer

M2

Mr
B

X

M1

Mn OutA
X

• Advantage: Full Swing
• Restorer adds capacitance, takes away pull down current at X
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Restorer SizingRestorer SizingRestorer SizingRestorer Sizing

3.0
•Upper limit on restorer size

2.0 W/Lr =1.75/0.25 [V
]

pp
•Pass-transistor pull-down
can have several transistors in 
stack

1.0

W/Lr =1.50/0.25 

V
ol

ta
ge

stack

0 100 200 300 400 500
0.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25 

0 100 200 300 400 500
Time [ps]
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Solution 2: Single Transistor Pass Gate with Solution 2: Single Transistor Pass Gate with 
VV =0=0VVTT=0=0

VDD

VDD
0V 2.5V

OutVDD 0V

2.5V

WATCH OUT FOR LEAKAGE CURRENTS 
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Complementary Pass Transistor LogicComplementary Pass Transistor LogicComplementary Pass Transistor LogicComplementary Pass Transistor Logic

F
Pass-Transistor

Network

A
A
B
B

(a)

FPass-Transistor
Network

A
A
B
B

Inverse

(a)

B B B B B B

A

B

A

BF=AB F=A+B

A

A F=A⊕ΒÝ

A

B

A

BF=AB F=A+B

A

A F=A⊕ΒÝ

(b)
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Solution 3: Transmission GateSolution 3: Transmission GateSolution 3: Transmission GateSolution 3: Transmission Gate
C

A B

C

A B

C

B

C

B

C
C

C = 2.5 V

B
CL

A = 2.5 V

L

C = 0 V
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Resistance of Transmission GateResistance of Transmission GateResistance of Transmission GateResistance of Transmission Gate

30 

V2 5 V

2.5 V
Rn

20 m
s

Rn

Rp
Vout

0 V

2.5 V

Rp

st
an

ce
, o

hm

p

0 V
10 

R
es

is

Rn || Rp

0.0 1.0 2.0
0 

Vout, V
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PassPass--Transistor Based MultiplexerTransistor Based MultiplexerPassPass Transistor Based MultiplexerTransistor Based Multiplexer

VDD

S S

A

S
VDD

A
M2

M

S F

M1

B

S

GND

In InS S
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Transmission Gate XORTransmission Gate XORTransmission Gate XORTransmission Gate XOR

B

B
M2

A
F

A

M2

F

B
M1 M3/M4

B

B
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Delay in Transmission Gate NetworksDelay in Transmission Gate NetworksDelay in Transmission Gate NetworksDelay in Transmission Gate Networks
2.5 2.5 2.5 2.5

V1 Vi-1

C

.5

0 0

Vi Vi+1

CC

.5

0

Vn-1 Vn

CC

.5

0

In

V1 Vi Vi+1 Vn-1 VnIn
ReqReq Req Req

(a)

C CC

In

CC

(b)

Req Req Req Req Req Req

m

CC CC CC CC
In

(c)
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Delay OptimizationDelay OptimizationDelay OptimizationDelay Optimization
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Transmission Gate Full AdderTransmission Gate Full AdderTransmission Gate Full AdderTransmission Gate Full Adder

P

A
VDD

VDD
Ci

S

P

P S G i
PA A Ci

A V

S

P

P Sum Generation

B
VDD

A
P

AB VDD

Co

P

P Carry Generation
Ci

A
Ci

o
Ci

PSetup PSetup

Similar delays for sum and carry
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Dynamic LogicDynamic LogicDynamic LogicDynamic Logic
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Dynamic CMOSDynamic CMOSDynamic CMOSDynamic CMOS

In static circuits at every point in time (except 
when switching) the output is connected to 
either GND or VDD via a low resistance path.

fan-in of n requires 2n (n N-type + n P-type) 
d idevices

D i i i l hDynamic circuits rely on the temporary 
storage of signal values on the capacitance of 
high impedance nodeshigh impedance nodes.

requires on n + 2 (n+1 N-type + 1 P-type) 
transistors
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Dynamic GateDynamic GateDynamic GateDynamic Gate

MpClk
Out Out

Clk Mp

In1

In PDN

Out

CL

Out

AIn2 PDN
In3

MClk
B

C

MeClk
Clk Me

Two phase operationTwo phase operation
Precharge (CLK = 0)
Evaluate (CLK = 1)
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Dynamic GateDynamic GateDynamic GateDynamic Gate

MpClk
Out Out

Clk Mp on 1
off

In1

In PDN

Out

CL

Out

A
((AB)+C)

In2 PDN
In3

MClk
B

C

MeClk
Clk Me

Two phase operation

off
on

Two phase operation
Precharge (Clk = 0)
Evaluate (Clk = 1)
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Conditions on OutputConditions on OutputConditions on OutputConditions on Output

Once the output of a dynamic gate is 
discharged, it cannot be charged again until 
the next precharge operation.
Inputs to the gate can make at most one 
transition during evaluation.

Output can be in the high impedance state 
during and after evaluation (PDN off), state is 
stored on CL
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Properties of Dynamic GatesProperties of Dynamic GatesProperties of Dynamic GatesProperties of Dynamic Gates
L i f ti i i l t d b th PDN lLogic function is implemented by the PDN only

number of transistors is N + 2 (versus 2N for static complementary 
CMOS)CMOS)

Full swing outputs (VOL = GND and VOH = VDD)
Non ratioed sizing of the devices does not affectNon-ratioed - sizing of the devices does not affect 
the logic levels
Faster switching speeds

reduced load capacitance due to lower input capacitance (Cin)
d d l d it d t ll t t l di (C t)reduced load capacitance due to smaller output loading (Cout)

no Isc, so all the current provided by PDN goes into discharging CL
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Properties of Dynamic GatesProperties of Dynamic GatesProperties of Dynamic GatesProperties of Dynamic Gates
Overall power dissipation usually higher than staticOverall power dissipation usually higher than static 
CMOS

no static current path ever exists between V and GNDno static current path ever exists between VDD and GND 
(including Psc)
no glitchingg g
higher transition probabilities
extra load on Clk

PDN starts to work as soon as the input signals 
exceed VTn, so VM, VIH and VIL equal to VTnTn, M, IH IL q Tn

low noise margin (NML)
Needs a precharge/evaluate clock
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Issues in Dynamic Design 1: Issues in Dynamic Design 1: 
Ch  L kCh  L kCharge LeakageCharge Leakage

Clk M

CLK

CL

Clk
Out

A

Mp

L

Clk

A

Me

VOut
Evaluate

Leakage sources

Precharge

g

Dominant component is subthreshold current

EE141© Digital Integrated Circuits2nd Combinational Circuits
95

Dominant component is subthreshold current



Solution to Charge LeakageSolution to Charge LeakageSolution to Charge LeakageSolution to Charge Leakage
K

Clk Mp Mkp

Keeper

CL
A Out

Clk M

B

Clk Me

Same approach as level restorer for pass-transistor logic
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Issues in Dynamic Design 2: Issues in Dynamic Design 2: y gy g
Charge SharingCharge Sharing

Charge stored originally on 

C

Clk

A
Out

Mp CL is redistributed (shared) 
over CL and CA leading to 
reduced robustnessCL

CA
B=0

A reduced robustness

Clk CBMe
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Charge Sharing ExampleCharge Sharing ExampleCharge Sharing ExampleCharge Sharing Example

Clk

O t
CL=50fFA A

Out

B B B !BCa=15fF Cb=15fF

CCCc=15fF Cd=10fF

Clk
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Charge SharingCharge SharingCharge SharingCharge Sharing
case 1) if ΔVout < VTn

VDD

CLVDD CLVout t( ) Ca VDD VTn VX( )–( )+=

) Vout  VTn

Clk

Out

Mp

L DD L out ( ) a DD Tn X( )( )

or
Ca

CL
A

Out

M ΔVout Vout t( ) VDD– a
CL
-------- VDD VTn VX( )–( )–= =

X

Ca

A Ma

Ca
⎜ ⎟
⎛ ⎞

case 2) if ΔVout > VTnB = 0
CaMb

ΔVout VDD
a

Ca CL+
----------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=Cb
Clk Me
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Solution to Charge RedistributionSolution to Charge RedistributionSolution to Charge RedistributionSolution to Charge Redistribution

Clk Mp

Out
Mkp

Clk

A

B

Out

Clk Me

B

Precharge internal nodes using a clock driven transistorPrecharge internal nodes using a clock-driven transistor 
(at the cost of increased area and power)
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Issues in Dynamic Design 3: Issues in Dynamic Design 3: 
Backgate CouplingBackgate Coupling

C

Clk

A=0

Out1Mp
Out2

C In

=1 =0

CL1

B=0

A=0 CL2

Clk Me

Dynamic NAND Static NAND
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Backgate Coupling EffectBackgate Coupling EffectBackgate Coupling EffectBackgate Coupling Effect

3

2

Out1
1 Clk

0
In Out2

-1
0 2 4 6Time, ns
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Issues in Dynamic Design 4: Clock Issues in Dynamic Design 4: Clock 
F dth hF dth hFeedthroughFeedthrough

Coupling between Out and 

C

Clk

A
Out

Mp Clk input of the precharge 
device due to the gate to 
drain capacitance SoCL

B

A drain capacitance.  So 
voltage of Out can rise 
above VDD. The fast rising

Clk Me

above VDD.  The fast rising 
(and falling edges) of the 
clock couple to Out.
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Clock FeedthroughClock Feedthrough

2.5
Clk

Out

Clock feedthrough

1.5

In1

In2

Out

0.5

2

In3 In &
Clk

-0.5Clk

In4 Out

0 0.5 1Time, ns

Clock feedthrough
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Other EffectsOther EffectsOther EffectsOther Effects

Capacitive coupling
Substrate couplingSubstrate coupling
Minority charge injectiony g j
Supply noise (ground bounce)
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Cascading Dynamic GatesCascading Dynamic GatesCascading Dynamic GatesCascading Dynamic Gates
V

Clk Mp Mp
Clk

Out2

V

Clk

Out1
In

Out2

In

Clk Me Me
Clk Out1 VTn

Out2 ΔV

t

Only 0 → 1 transitions allowed at inputs!
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Domino LogicDomino LogicDomino LogicDomino Logic

MClk MClk M

I

MpClk Out1
MpClk

Out2
Mkp

1 → 1
1 → 0

0 → 0
In1

In2 PDN
In3

In4 PDN
In5

0 → 1

In3

MeClk

5

MeClk
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Why Domino?Why Domino?Why Domino?Why Domino?

ClkClk

Ini PDN
Inj

Ini
Inj

PDN Ini PDN
Inj

Ini PDN
Inj

Clk

Like falling dominos!
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Properties of Domino LogicProperties of Domino LogicProperties of Domino LogicProperties of Domino Logic

Only non-inverting logic can be implementedy g g p
Very high speed

static inverter can be skewed only L H transitionstatic inverter can be skewed, only L-H transition
Input capacitance reduced – smaller logical effort
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Designing with Domino LogicDesigning with Domino LogicDesigning with Domino LogicDesigning with Domino Logic
VDD VDD

MpClk MpClk M

VDD

Out1

Out2

Mr

PDN
In1
In2
In3

PDNIn4

Me

In3

Clk MeClk

Can be eliminated!

Inputs = 0
during precharge
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Footless DominoFootless DominoFootless DominoFootless Domino
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Differential (Dual Rail) DominoDifferential (Dual Rail) DominoDifferential (Dual Rail) DominoDifferential (Dual Rail) Domino

MpClk Mkp
Clk

O t AB
Mkp Mp

onoff

A

Out = AB Out = AB
1         0 1           0

B
!A !B

MeClk

Solves the problem of non-inverting logic
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npnp--CMOSCMOSnpnp--CMOSCMOS

MpClk Out1
MeClk

In1

Out1

In4 PUN

1 → 1
1 → 0

In2 PDN
In3

In5

Out2
(to PDN)

0 → 0
0 → 1

MeClk MpClk (to PDN)

Only 0 → 1 transitions allowed at inputs of PDN 
Only 1 → 0 transitions allowed at inputs of PUN
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Only 1 → 0 transitions allowed at inputs of PUN



NORA LogicNORA LogicNORA LogicNORA Logic

MpClk Out1
MeClk

1 → 1

In1

I PDN

In4 PUN
In

1 → 1
1 → 0

In2 PDN
In3

In5

MClk

Out2
(to PDN)

0 → 0
0 → 1

MeClk MpClk ( )

to other to otherto other
PDN’s

to other
PUN’s
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WARNING: Very sensitive to noise!


