

Digital Integrated Circuits

Designing Combinational Logic Circuits

© Digital Integrated Circuits^{2nd}

Combinational vs. Sequential Logic

Combinational

Sequential

Output = f(In)

Output = f(In, Previous In)

© Digital Integrated Circuits^{2nd}

Static CMOS Circuit

- At every point in time (except during the switching transients) each gate output is connected to either V_{DD} or V_{ss} via a low-resistive path.
- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).
- This is in contrast to the *dynamic* circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

Static Complementary CMOS

PUN (pull-up network) and PDN (pull-down network) are dual logic networks

© Digital Integrated Circuits^{2nd}

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

© Digital Integrated Circuits^{2nd}

Combinational Circuits

6

Threshold Drops

© Digital Integrated Circuits^{2nd}

Complementary CMOS Logic Style

• PUP is the <u>DUAL</u> of PDN

(can be shown using DeMorgan's Theorem's)

$$\overline{\overline{A} + B} = \overline{\overline{A}}\overline{\overline{B}}$$
$$\overline{\overline{A}}\overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{B}}$$

• The complementary gate is inverting

AND = NAND + INV

Example Gate: NAND

PDN: G = A B \Rightarrow Conduction to GND PUN: F = $\overline{A} + \overline{B}$ = $\overline{AB} \Rightarrow$ Conduction to V_{DD}

$$G(In_1, In_2, In_3, \ldots) \equiv F(\overline{In_1}, \overline{In_2}, \overline{In_3}, \ldots)$$

Example Gate: NOR

Complex CMOS Gate

© Digital Integrated Circuits^{2nd}

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

(c) complete gate

Cell Design

Standard Cells

- General purpose logic
- Can be synthesized
- Same height, varying width
- Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell
 - Fixed height and width

Standard Cell Layout Methodology – 1980s

Standard Cell Layout Methodology – 1990s

© Digital Integrated Circuits^{2nd}

Standard Cells

X-X-X V_{DD} With silicided V_{DD} With minimal diffusion diffusion X routing \mathbf{X} \boxtimes \boxtimes V_{DD} \mathbf{X} \ge \times M_2 Out In Out In Out In \ge 0 M_1 \mathbf{X} \boxtimes \mathbf{X} \times GND GND

> 17 Combinational Circuits

Standard Cells

2-input NAND gate

Contains no dimensions Represents relative positions of transistors

Stick Diagrams

20 Combinational Circuits

Two Versions of C • (*A* + *B*)

Consistent Euler Path

OAI22 Logic Graph

23 Combinational Circuits

Example: x = *ab*+*cd*

(a) Logic graphs for $\overline{(ab+cd)}$

(c) stick diagram for ordering $\{a \ b \ c \ d\}$

Multi-Fingered Transistors

One finger

Two fingers (folded)

Less diffusion capacitance

© Digital Integrated Circuits^{2nd}

Properties of Complementary CMOS Gates Snapshot

High noise margins: V_{OH} and V_{OL} are at V_{DD} and GND, respectively.No static power consumption:There never exists a direct path between V_{DD} and V_{SS} (GND) in steady-state mode.Comparable rise and fall times:

(under appropriate sizing conditions)

CMOS Properties

□ Full rail-to-rail swing; high noise margins

- Logic levels not dependent upon the relative device sizes; ratioless
- Always a path to Vdd or Gnd in steady state; low output impedance
- Extremely high input resistance; nearly zero steady-state input current
- No direct path steady state between power and ground; no static power dissipation
- Propagation delay function of load capacitance and resistance of transistors

27

© Digital Integrated Circuits^{2nd}

Input Pattern Effects on Delay

Delay is dependent on the pattern of inputs
 Low to high transition
 both inputs go low

 delay is 0.69 R_p/2 C_L

- one input goes low
 delay is 0.69 R_p C_L
- □ High to low transition
 - both inputs go high
 delay is 0.69 2R_n C_L

Delay Dependence on Input Patterns

© Digital Integrated Circuits^{2nd}

Transistor Sizing

© Digital Integrated Circuits^{2nd}

Transistor Sizing a Complex CMOS Gate

© Digital Integrated Circuits^{2nd}

Fan-In Considerations

Distributed RC model (Elmore delay)

$$E_{pHL} = 0.69 R_{eqn}(C_1 + 2C_2 + 3C_3 + 4C_L)$$

Propagation delay deteriorates rapidly as a function of fan-in – **quadratically** in the worst case.

t_p as a Function of Fan-In

t_p as a Function of Fan-Out

All gates have the same drive current.

Slope is a function of "driving strength"

© Digital Integrated Circuits^{2nd}

t_p as a Function of Fan-In and Fan-Out

Fan-in: quadratic due to increasing resistance and capacitance

□ Fan-out: each additional fan-out gate adds two gate capacitances to C_L

$$t_p = a_1 F I + a_2 F I^2 + a_3 F O$$

36 Combinational Circuits
Fast Complex Gates: Design Technique 1

Transistor sizing

as long as fan-out capacitance dominates

□ Progressive sizing

Distributed RC line

M1 > M2 > M3 > ... > MN (the fet closest to the output is the smallest)

Can reduce delay by more than 20%; decreasing gains as technology shrinks

© Digital Integrated Circuits^{2nd}

Combinational Circuits

37

Fast Complex Gates: Design Technique 3

□ Alternative logic structures

F – ABCDEFGH

39 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Fast Complex Gates: Design Technique 4

Isolating fan-in from fan-out using buffer insertion

Fast Complex Gates: Design Technique 5

Reducing the voltage swing

 $t_{pHL} = 0.69 (3/4 (C_L V_{DD}) / I_{DSATn})$

 $= 0.69 (3/4 (C_{L} V_{swing}) / I_{DSATn})$

- linear reduction in delay
- also reduces power consumption

□ But the following gate is much slower!

Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

41

Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- □ Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain – can we generalize it for any type of logic?

For given *N*: $C_{i+1}/C_i = C_i/C_{i-1}$ To find *N*: $C_{i+1}/C_i \sim 4$ How to generalize this to any logic path?

© Digital Integrated Circuits^{2nd}

Logical Effort

$$Delay = k \cdot R_{unit} C_{unit} \left(1 + \frac{C_L}{\gamma C_{in}} \right)$$
$$= \tau \left(p + g \cdot f \right)$$

 $p - \text{intrinsic delay} (3kR_{\text{unit}}C_{\text{unit}}\gamma) - \text{gate parameter} \neq f(W)$ g – logical effort (k $R_{unit}C_{unit}$) – gate parameter \neq f(W) f – effective fanout

Normalize everything to an inverter: $g_{inv} = 1, p_{inv} = 1$

```
Divide everything by \tau_{inv}
    (everything is measured in unit delays \tau_{inv})
    Assume \gamma = 1.
© Digital Integrated Circuits<sup>2nd</sup>
```

Delay in a Logic Gate

Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size

Combinational Circuits

45

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with the gate complexity

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

© Digital Integrated Circuits^{2nd}

Logical Effort of Gates

Logical Effort of Gates

Logical Effort of Gates

© Digital Integrated Circuits^{2nd}

Add Branching Effort

Branching effort:

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Stage effort: $h_i = g_i f_i$

Path electrical effort: $F = C_{out}/C_{in}$

Path logical effort: $G = g_1 g_2 \dots g_N$

Branching effort: $B = b_1 b_2 \dots b_N$

Path effort: H = GFB

Path delay
$$D = \Sigma d_i = \Sigma p_i + \Sigma h_i$$

Optimum Effort per Stage

When each stage bears the same effort:

 $h^{N} = H$ $h = \sqrt[N]{H}$

Stage efforts: $g_1 f_1 = g_2 f_2 = \dots = g_N f_N$

Effective fanout of each stage: $f_i = h/g_i$

Minimum path delay

$$\hat{D} = \sum (g_i f_i + p_i) = NH^{1/N} + P$$

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$D = NH^{1/N} + Np_{inv}$$
$$\frac{\partial D}{\partial N} = -H^{1/N} \ln(H^{1/N}) + H^{1/N} + p_{inv} = 0$$

Substitute 'best stage effort' $h = H^{1/\hat{N}}$

© Digital Integrated Circuits^{2nd}

Logical Effort

	Number of Inputs			
Gate Type	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n + 2)/3
NOR		5/3	7/3	(2n + 1)/3
Multiplexer		2	2	2
XOR		4	12	

From Sutherland, Sproull

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, F = G = H = h = a = b =

© Digital Integrated Circuits^{2nd}

Effective fanout, F = 5 G = 25/9 H = 125/9 = 13.9 h = 1.93 a = 1.93 $b = ha/g_2 = 2.23$ $c = hb/g_3 = 5g_4/f = 2.59$

© Digital Integrated Circuits^{2nd}

Combinational Circuits

57

Example: Optimize Path

Effective fanout, H = 5 G = 25/9 F = 125/9 = 13.9 f = 1.93 a = 1.93 $b = fa/g_2 = 2.23$ $c = fb/g_3 = 5g_4/f = 2.59$

© Digital Integrated Circuits^{2nd}

Example – 8-input AND

© Digital Integrated Circuits^{2nd}

Method of Logical Effort

 Compute the path effort: F = GBH
 Find the best number of stages N ~ log₄F
 Compute the stage effort f = F^{1/N}
 Sketch the path with this number of stages
 Work either from either end, find sizes: C_{in} = C_{out}*g/f

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Summary

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression	
Logical effort	$oldsymbol{g}$ (seeTable 1)	$G = \prod g_i$	
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = \frac{C_{out (path)}}{C_{in (path)}}$	
Branching effort	n/a	$B = \prod b_i$	
Effort	f = gh	F = GBH	
Effort delay	f	$D_F = \sum f_i$	
Number of stages	1	N	
Parasitic delay	$oldsymbol{ ho}$ (seeTable 2)	$P = \sum p_i$	
Delay	d = f + p	$D = D_F^+ P$	

Sutherland, Sproull Harris

© Digital Integrated Circuits^{2nd}

Ratioed Logic

© Digital Integrated Circuits^{2nd}

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

Ratioed Logic

- N transistors + Load
- $V_{OH} = V_{DD}$

•
$$V_{OL} = \frac{R_{PN}}{R_{PN} + R_L}$$

- Assymetrical response
- Static power consumption
- t_{pL}= 0.69 R_LC_L

Active Loads

depletion load NMOS

pseudo-NMOS

Pseudo-NMOS

 $V_{OH} = V_{DD}$ (similar to complementary CMOS)

$$k_{n}\left((V_{DD} - V_{Tn})V_{OL} - \frac{V_{OL}^{2}}{2}\right) = \frac{k_{p}}{2}(V_{DD} - |V_{Tp}|)^{2}$$

$$\mathbf{V}_{OL} = (\mathbf{V}_{DD} - \mathbf{V}_{T}) \left[1 - \sqrt{1 - \frac{\mathbf{k}_{p}}{\mathbf{k}_{n}}} \right] \text{(assuming that } \mathbf{V}_{T} = \mathbf{V}_{Tn} = |\mathbf{V}_{Tp}| \text{)}$$

SMALLER AREA & LOAD <u>BUT</u> STATIC POWER DISSIPATION !!!

© Digital Integrated Circuits^{2nd}

Combinational Circuits

66

Pseudo-NMOS VTC

© Digital Integrated Circuits^{2nd}

Improved Loads

Adaptive Load

© Digital Integrated Circuits^{2nd}

Improved Loads (2)

Differential Cascode Voltage Switch Logic (DCVSL)

XOR-NXOR gate

DCVSL Transient Response

Pass-Transistor Logic

© Digital Integrated Circuits^{2nd}
Pass-Transistor Logic

- N transistors
- No static consumption

© Digital Integrated Circuits^{2nd}

NMOS-Only Logic

NMOS-only Switch

 V_B does not pull up to 2.5V, but 2.5V - V_{TN}

Threshold voltage loss causes static power consumption

NMOS has higher threshold than PMOS (body effect)

© Digital Integrated Circuits^{2nd}

Combinational Circuits

76

NMOS Only Logic: Level Restoring Transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

© Digital Integrated Circuits^{2nd}

Restorer Sizing

Upper limit on restorer size
Pass-transistor pull-down can have several transistors in stack

Solution 2: Single Transistor Pass Gate with V_T=0

WATCH OUT FOR LEAKAGE CURRENTS

© Digital Integrated Circuits^{2nd}

Complementary Pass Transistor Logic

OR/NOR

EXOR/NEXOR

© Digital Integrated Circuits^{2nd}

AND/NAND

Combinational Circuits

80

Solution 3: Transmission Gate

© Digital Integrated Circuits^{2nd}

Resistance of Transmission Gate

© Digital Integrated Circuits^{2nd}

Pass-Transistor Based Multiplexer

© Digital Integrated Circuits^{2nd}

Transmission Gate XOR

Delay in Transmission Gate Networks

(a)

(b)

© Digital Integrated Circuits^{2nd}

Delay Optimization

Delay of RC chain

$$t_p = 0.69 \sum_{k=0}^{n} CR_{eq}k = 0.69CR_{eq}\frac{n(n+1)}{2}$$

• Delay of Buffered Chain $t_p = 0.69 \left\lfloor \frac{n}{m} CR_{eq} \frac{m(m+1)}{2} \right\rfloor + \left(\frac{n}{m} - 1 \right) t_{buf}$ $= 0.69 \left[CR_{eq} \frac{n(m+1)}{2} \right] + \left(\frac{n}{m} - 1 \right) t_{buf}$

$$m_{opt} = 1.7 \sqrt{\frac{t_{pbuf}}{CR_{eq}}}$$

© Digital Integrated Circuits^{2nd}

Transmission Gate Full Adder

Similar delays for sum and carry

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

Dynamic CMOS

- □ In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of *n* requires 2n (*n* N-type + *n* P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

89

Two phase operation **Precharge** (CLK = 0) Evaluate (CLK = 1)

© Digital Integrated Circuits^{2nd}

Two phase operation **Precharge** (Clk = 0) **Evaluate** (Clk = 1)

© Digital Integrated Circuits^{2nd}

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L

Properties of Dynamic Gates

□ Logic function is implemented by the PDN only

- number of transistors is N + 2 (versus 2N for static complementary CMOS)
- □ Full swing outputs ($V_{OL} = GND$ and $V_{OH} = V_{DD}$)

Non-ratioed - sizing of the devices does not affect the logic levels

- □ Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)
 - no I_{sc}, so all the current provided by PDN goes into discharging C_L

Properties of Dynamic Gates

Overall power dissipation usually higher than static CMOS

- no static current path ever exists between V_{DD} and GND (including P_{sc})
- no glitching
- higher transition probabilities
- extra load on Clk
- □ PDN starts to work as soon as the input signals exceed V_{Tn}, so V_M, V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM_L)

Needs a precharge/evaluate clock

94

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current

© Digital Integrated Circuits^{2nd}

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

© Digital Integrated Circuits^{2nd}

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness

Charge Sharing Example

© Digital Integrated Circuits^{2nd}

Charge Sharing

case 1) if $\Delta V_{out} < V_{Tn}$

$$C_{L}V_{DD} = C_{L}V_{out}(t) + C_{a}(V_{DD} - V_{Tn}(V_{X}))$$

or
$$\Delta V_{out} = V_{out}(t) - V_{DD} = -\frac{C_{a}}{C_{L}}(V_{DD} - V_{Tn}(V_{X}))$$

case 2) if $\Delta V_{out} > V_{Tn}$

$$\Delta \mathbf{V}_{out} = -\mathbf{V}_{DD} \left(\frac{\mathbf{C}_{a}}{\mathbf{C}_{a} + \mathbf{C}_{L}} \right)$$

99 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Solution to Charge Redistribution

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

© Digital Integrated Circuits^{2nd}

Issues in Dynamic Design 3: Backgate Coupling

© Digital Integrated Circuits^{2nd}

Backgate Coupling Effect

© Digital Integrated Circuits^{2nd}

Issues in Dynamic Design 4: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD} . The fast rising (and falling edges) of the clock couple to Out.

Clock Feedthrough

© Digital Integrated Circuits^{2nd}

Capacitive coupling
Substrate coupling
Minority charge injection
Supply noise (ground bounce)

Cascading Dynamic Gates

Only $0 \rightarrow 1$ transitions allowed at inputs!

© Digital Integrated Circuits^{2nd}

Domino Logic

© Digital Integrated Circuits^{2nd}

Why Domino?

Like falling dominos!
Properties of Domino Logic

Only non-inverting logic can be implemented
Very high speed

- static inverter can be skewed, only L-H transition
- Input capacitance reduced smaller logical effort

Designing with Domino Logic

© Digital Integrated Circuits^{2nd}

Footless Domino

The first gate in the chain needs a foot switch Precharge is rippling – short-circuit current A solution is to delay the clock for each stage

© Digital Integrated Circuits^{2nd}

Differential (Dual Rail) Domino

Solves the problem of non-inverting logic

© Digital Integrated Circuits^{2nd}

np-CMOS

Only $0 \rightarrow 1$ transitions allowed at inputs of PDN Only $1 \rightarrow 0$ transitions allowed at inputs of PUN

© Digital Integrated Circuits^{2nd}

WARNING: Very sensitive to noise!

© Digital Integrated Circuits^{2nd}