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Goal of this chapterGoal of this chapterGoal of this chapterGoal of this chapter
P t i t iti d t di f d i tiPresent intuitive understanding of device operation

Introduction of basic device equationsIntroduction of basic device equations

Introduction of models for manual analysisy

Introduction of models for SPICE simulation

Analysis of secondary and deep-sub-micron effects

Future trends
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The DiodeThe Diode
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representation diode symbolrepresentation diode symbol

Mostly occurring as parasitic element in Digital ICs
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Built in potential
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Diode CurrentDiode CurrentDiode CurrentDiode Current
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Forward BiasForward BiasForward BiasForward Bias
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Forward voltage lowers the potential barrier
diffusion

Typically avoided in Digital ICs

Forward voltage lowers the potential barrier 
diffusion currents increase
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Typically avoided in Digital ICs



Reverse BiasReverse BiasReverse BiasReverse Bias
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Reverse voltage raises the potential barrier
diffusion

The Dominant Operation Mode

Reverse voltage raises the potential barrier 
diffusion currents reduce
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Models for Manual AnalysisModels for Manual AnalysisModels for Manual AnalysisModels for Manual Analysis

ID = IS(eVD/φT  – 1)
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VDon = 0.7V
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(a) Ideal diode model (b) First-order diode model
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Junction CapacitanceJunction CapacitanceJunction CapacitanceJunction Capacitance
Forward bias ↑ potential barrier ↓ depletion region ↓ cap. ↑
Reverse bias ↑ potential barrier ↑ depletion region ↑ cap. ↓

All diodes in Digital IC 
are reverse biased
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Secondary EffectsSecondary Effects All diodes in Digital IC 
are reverse biasedSecondary EffectsSecondary Effects
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Breakdown voltage

are reverse biased
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Breakdown voltage
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Avalanche Breakdown
High reverse voltage E-field ↑ carriers are accelerated to high velocity

High energy carriers create electron-hole pair in the depletion region
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High energy carriers create electron hole pair in the depletion region 
carriers increase currents increase



Diode ModelDiode ModelDiode ModelDiode Model
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SPICE ParametersSPICE ParametersSPICE ParametersSPICE Parameters
)1( / −= TnVveIi )1(= S eIi
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What is a Transistor?What is a Transistor?What is a Transistor?What is a Transistor?

A Switch! An MOS TransistorA Switch! An MOS Transistor

VGS ≥VT

Ron

|VGS|

o
S D
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The MOS TransistorThe MOS TransistorThe MOS TransistorThe MOS Transistor
Polysilicon

Aluminum
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MOS T i t  MOS T i t  T  d S b lT  d S b lMOS Transistors MOS Transistors --Types and SymbolsTypes and Symbols
D DD
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NMOS Enhancement
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PMOS Enhancement

If the fourth terminal is not shown, 
It i d th t th b d i t d t th i t l

© Digital Integrated Circuits2nd Devices

It is assumed that the body is connected to the appropriate supply



Threshold Voltage: ConceptThreshold Voltage: ConceptThreshold Voltage: ConceptThreshold Voltage: Concept
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The Threshold VoltageThe Threshold VoltageThe Threshold VoltageThe Threshold Voltage
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The Body EffectThe Body EffectThe Body EffectThe Body Effect
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CurrentCurrent--Voltage RelationsVoltage Relations
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VGS= 1.0 V
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Transistor in LinearTransistor in LinearTransistor in LinearTransistor in Linear
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MOS transistor and its bias conditions
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MOS transistor and its bias conditions



Transistor in SaturationTransistor in SaturationTransistor in SaturationTransistor in Saturation
VGS

VDS > VGS VT
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VDS > VGS - VT
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VGS - VT
+- VGS  VT

Pinch-off
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CurrentCurrent--Voltage RelationsVoltage Relations
LL Ch l D iCh l D iLongLong--Channel DeviceChannel Device
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A model for manual analysisA model for manual analysisA model for manual analysisA model for manual analysis
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CurrentCurrent--Voltage RelationsVoltage Relations
DeepDeep--Submicron Era (Short Channel Devices)Submicron Era (Short Channel Devices)
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Velocity SaturationVelocity SaturationVelocity SaturationVelocity Saturation
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υsat = 105 = ζcμn

υ
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Constant velocity

Constant mobility (slope = µ)

E field ↑ velocity ↑

ξ 1 5

E-field ↑ velocity ↑

ξ (V/µm)ξc = 1.5
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E-field ↑ critical value carrier velocity saturates due to scattering effect



PerspectivePerspectivePerspectivePerspective
IDD

Long-channel device

Short-channel device

VGS = VDD

VDSVDSAT VGS - VT
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Short channel devices VDD ↓ look like long channel devices



II versus Vversus VGSGSIIDD versus Vversus VGSGS
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II versus Vversus V SSIIDD versus Vversus VDSDS
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A unified modelA unified model
f  l l if  l l ifor manual analysisfor manual analysis
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Simple Model versus SPICE Simple Model versus SPICE Simple Model versus SPICE Simple Model versus SPICE 
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A PMOS TransistorA PMOS TransistorA PMOS TransistorA PMOS Transistor
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Transistor Model Transistor Model 
for Manual Analysisfor Manual Analysis
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The Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a Switch
VGS ≥ VT

Ron
S D

ID VGS = VD D
ID VGS = VD D
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The Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a Switch
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The Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a SwitchThe Transistor as a Switch
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MOS CapacitancesMOS Capacitances
Dynamic BehaviorDynamic Behavior
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Dynamic Behavior of MOS TransistorDynamic Behavior of MOS TransistorDynamic Behavior of MOS TransistorDynamic Behavior of MOS Transistor
G

DS

CGDCGS

C CCGBCSB CDBCGB

B

© Digital Integrated Circuits2nd Devices



The Gate CapacitanceThe Gate Capacitancepp
Polysilicon gate

Overlap capacitance

Source Drain
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xd xd

Gate bulk
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Top view
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Gate oxide
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Cross section

L

© Digital Integrated Circuits2nd Devices



Gate CapacitanceGate CapacitanceGate CapacitanceGate Capacitance
GG

CGC

G

CGC

G

CGC
S D S D

GC
S D

GC

Cut-off Resistive Saturation

Most important regions in digital design: saturation and cut-off
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Gate CapacitanceGate CapacitanceGate CapacitanceGate Capacitance
VGS ↑ channel depletion ↑ CGCB ↓ VGS ↑ channel ↑ CGC constant

WLC
CGCWLC

GS ↑ p ↑ GCB ↓ GS ↑ ↑ GC

WLCox

WLCox

2WLCox
3

CGC

CGCSCGCS = CGCDCGC B

WLCox

WLCox
2

/( )

CGCD

0 1

CGC B
2

V VDS /(VGS-VT)0 1VGS

Capacitance as a function of VGS Capacitance as a function of the p GS
(with VDS = 0)

p
degree of saturation
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Measuring the Gate CapMeasuring the Gate CapMeasuring the Gate CapMeasuring the Gate Cap
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Diffusion Capacitance (Junction Cap )Diffusion Capacitance (Junction Cap )Diffusion Capacitance (Junction Cap.)Diffusion Capacitance (Junction Cap.)
Channel-stop implant
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Junction CapacitanceJunction CapacitanceJunction CapacitanceJunction Capacitance
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Capacitances in 0.25 Capacitances in 0.25 μμm CMOS m CMOS 
processprocess
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The SubThe Sub Micron MOS TransistorMicron MOS TransistorThe SubThe Sub--Micron MOS TransistorMicron MOS Transistor

Threshold Variations
Subthreshold ConductionSubthreshold Conduction
Parasitic Resistances
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Threshold VariationsThreshold VariationsThreshold VariationsThreshold Variations
VTVT

Long-channel threshold Low VDS threshold

L
VDS

Threshold as a function of 
the length (for low VDS) 

Drain-induced barrier lowering (DIBL) 
(for low L)

Short channel effect?Short channel effect?
Narrow channel effect?
Drain-induced barrier lowering (DIBL)?
Punch-through?
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Hot carrier effectHot carrier effectHot carrier effectHot carrier effect
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SubSub--Threshold ConductionThreshold ConductionSubSub--Threshold ConductionThreshold Conduction

10
-2

Linear
The Slope Factor

qV C

6

10
-4

Linear

ox

DnkT
qV

D C
CneII

GS

+=1   ,~ 0

10
-8

10
-6

I D
(A

)

Quadratic
S is ΔVGS for ID2/ID1 =10

10
-10

10

Exponential

0 0.5 1 1.5 2 2.5
10

-12

V (V)

VT Typical values for S:
60 .. 100 mV/decade

© Digital Integrated Circuits2nd Devices

VGS (V)



SubSub--Threshold Threshold II vs vs VVGSGSSubSub--Threshold Threshold IIDD vs vs VVGSGS
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SubSub--Threshold Threshold II vs vs VV SSSubSub--Threshold Threshold IIDD vs vs VVDSDS
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Summary of MOSFET Operating Summary of MOSFET Operating 
RegionsRegions

Strong Inversion VGS  > VT
Linear (Resistive) VDS  < VDSAT

Saturated (Constant Current) VDS ≥VDSATSaturated (Constant Current) VDS  ≥VDSAT

Weak Inversion (Sub-Threshold) VGS  ≤VT
Exponential in VGS with linear VDS dependence
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Parasitic ResistancesParasitic ResistancesParasitic ResistancesParasitic Resistances
Sheet Resistance

Polysilicon gateCsh
DS

DS RR
W

L
R += ,

,

Sheet Resistance

LD

Drain
contact

y g

G

W
Contact Resistance

WDS

VGS,eff

Drain

RS RD

Drain
TR. Scale down shallow junction & small contact R ↑
Metal over S/D = silicidation R ↓
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LatchLatch--upupLatchLatch--upup
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Future PerspectivesFuture PerspectivesFuture PerspectivesFuture Perspectives

25 nm FINFET MOS transistor
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